Estimates pairwise hit expectations \(E(n_i n_j)\) for Chromy's sequential PPS sampling via Monte Carlo simulation.
up_chromy_pairexp(x, n, nsim = 10000L)A symmetric N x N matrix of pairwise expectations. Entry (i, j) is \(E(n_i n_j)\), the expected product of hit counts. Diagonal entries are \(E(n_k^2)\).
Chromy's method is a minimum replacement (PMR) design where units with large size measures can be selected multiple times. The appropriate variance estimator uses pairwise expectations rather than joint inclusion probabilities.
Chromy (2009) gives the generalized Yates-Grundy variance: $$V(\hat{T}) = \frac{1}{2} \sum_{i \neq j} \{E(n_i)E(n_j) - E(n_i n_j)\} \left(\frac{y_i}{E(n_i)} - \frac{y_j}{E(n_j)}\right)^2$$
where \(E(n_k) = n x_k / \sum x\) is exact.
In the without-replacement case (all \(E(n_k) < 1\)), this reduces to the standard Sen-Yates-Grundy formula with \(E(n_i n_j) = \pi_{ij}\).
Chromy, J.R. (2009). Some Generalizations of the Horvitz-Thompson Estimator. Proceedings of the Survey Research Methods Section, ASA, 216-227.
Chauvet, G. (2019). Properties of Chromy's sampling procedure. arXiv:1912.10896.
up_chromy() for sampling, up_brewer_jip() for joint
inclusion probabilities under high-entropy WOR designs.
x <- c(10, 20, 15, 25, 30)
pairexp <- up_chromy_pairexp(x, n = 3, nsim = 5000)
# Expected hits (exact)
En <- 3 * x / sum(x)
# In WOR case: diagonal approximates E(n_k)
diag(pairexp) # Should be close to En
#> [1] 0.2938 0.6096 0.4508 0.7508 0.8950
# Covariance structure for variance estimation
En_outer <- outer(En, En)
Cov_nn <- pairexp - En_outer # E(n_i n_j) - E(n_i)E(n_j)