A synthetic business establishment frame inspired by World Bank Enterprise Surveys. Uses real Nigeria states and geopolitical zones but contains entirely fictional data.

nigeria_business

Format

A tibble with approximately 10,000 rows and 7 columns:

enterprise_id

Character. Unique business identifier

zone

Factor. Geopolitical zone (North Central, North East, North West, South East, South South, South West)

state

Factor. State name (36 states + FCT)

sector

Factor. Business sector (Manufacturing, Retail Trade, Wholesale Trade, Services, Construction, Transport, Hospitality)

size_class

Factor. Size classification (Micro: 1-4, Small: 5-19, Medium: 20-99, Large: 100+)

employees

Integer. Number of employees (measure of size)

annual_turnover

Numeric. Annual turnover in Naira

Details

This dataset is designed for demonstrating:

  • Business/enterprise surveys

  • Stratification by sector and size class

  • PPS sampling using employment

  • Geographic stratification by zone/state

The distribution reflects typical business demographics with majority micro/small enterprises, concentrated in South West (especially Lagos).

Note

This is a synthetic dataset. States and zones are real but all data values are fictional.

Examples

# Explore the data
head(nigeria_business)
#> # A tibble: 6 × 7
#>   enterprise_id zone          state sector  size_class employees annual_turnover
#>   <chr>         <fct>         <fct> <fct>   <fct>          <dbl>           <dbl>
#> 1 NG_01_00001   North Central Benue Transp… Micro              2         5148000
#> 2 NG_01_00002   North Central Benue Wholes… Micro              1         3387000
#> 3 NG_01_00003   North Central Benue Manufa… Small             13        44715000
#> 4 NG_01_00004   North Central Benue Manufa… Micro              3         7248000
#> 5 NG_01_00005   North Central Benue Retail… Micro              2        11436000
#> 6 NG_01_00006   North Central Benue Retail… Micro              1         3361000
table(nigeria_business$size_class)
#> 
#>  Micro  Small Medium  Large 
#>   6445   3231   1366    575 
table(nigeria_business$sector)
#> 
#>    Construction     Hospitality   Manufacturing    Retail Trade        Services 
#>             959            1199            1309            3483            2536 
#>       Transport Wholesale Trade 
#>             937            1194 

# Stratified sample by sector and size class
sampling_design() |>
  stratify_by(sector, size_class) |>
  draw(n = 3) |>
  execute(nigeria_business, seed = 42)
#> == tbl_sample ==
#> Weights: 15.67 - 655.33 (mean: 138.3 )
#> 
#> # A tibble: 84 × 12
#>    sector size_class enterprise_id zone  state employees annual_turnover .weight
#>  * <fct>  <fct>      <chr>         <fct> <fct>     <dbl>           <dbl>   <dbl>
#>  1 Const… Micro      NG_32_00738   Sout… Ekiti         2         2535000   180  
#>  2 Const… Micro      NG_22_00327   Sout… Anam…         2         5446000   180  
#>  3 Const… Micro      NG_13_00086   Nort… Yobe          3         4232000   180  
#>  4 Const… Small      NG_35_00504   Sout… Ondo         11        18611000    87  
#>  5 Const… Small      NG_32_00432   Sout… Ekiti        15        24385000    87  
#>  6 Const… Small      NG_30_00088   Sout… Edo          12        20757000    87  
#>  7 Const… Medium     NG_26_00057   Sout… Akwa…        96       172466000    37  
#>  8 Const… Medium     NG_24_00215   Sout… Enugu        47       126948000    37  
#>  9 Const… Medium     NG_16_00154   Nort… Kano         94       125757000    37  
#> 10 Const… Large      NG_12_00049   Nort… Tara…      1901      3510676000    15.7
#> # ℹ 74 more rows
#> # ℹ 4 more variables: .sample_id <int>, .stage <int>, .weight_1 <dbl>,
#> #   .fpc_1 <int>

# Disproportionate sampling: oversample large enterprises
sampling_design() |>
  stratify_by(size_class) |>
  draw(frac = c(Micro = 0.005, Small = 0.02, Medium = 0.10, Large = 0.50)) |>
  execute(nigeria_business, seed = 42)
#> == tbl_sample ==
#> Weights: 2 - 195.3 (mean: 22.21 )
#> 
#> # A tibble: 523 × 12
#>    size_class enterprise_id zone  state sector employees annual_turnover .weight
#>  * <fct>      <chr>         <fct> <fct> <fct>      <dbl>           <dbl>   <dbl>
#>  1 Micro      NG_27_00194   Sout… Baye… Manuf…         3         7576000    195.
#>  2 Micro      NG_33_00528   Sout… Lagos Hospi…         2         4142000    195.
#>  3 Micro      NG_26_00035   Sout… Akwa… Servi…         4         7047000    195.
#>  4 Micro      NG_34_00596   Sout… Ogun  Retai…         4         9600000    195.
#>  5 Micro      NG_15_00004   Nort… Kadu… Retai…         3         7316000    195.
#>  6 Micro      NG_17_00008   Nort… Kats… Trans…         2         5477000    195.
#>  7 Micro      NG_06_00045   Nort… Plat… Hospi…         4        10406000    195.
#>  8 Micro      NG_24_00141   Sout… Enugu Trans…         2         3140000    195.
#>  9 Micro      NG_34_00549   Sout… Ogun  Manuf…         3         5295000    195.
#> 10 Micro      NG_35_00120   Sout… Ondo  Hospi…         1         2816000    195.
#> # ℹ 513 more rows
#> # ℹ 4 more variables: .sample_id <int>, .stage <int>, .weight_1 <dbl>,
#> #   .fpc_1 <int>