Variance of household counts by region, calculated from niger_eas. Used for demonstrating Neyman optimal allocation in stratified sampling.

niger_eas_variance

Format

A tibble with 8 rows and 2 columns:

region

Factor. Region name

var

Numeric. Variance of household counts within region

Examples

# View the variance data
niger_eas_variance
#> # A tibble: 8 × 2
#>   region      var
#>   <fct>     <dbl>
#> 1 Agadez    6249.
#> 2 Diffa     1950.
#> 3 Dosso     2771.
#> 4 Maradi    3207.
#> 5 Niamey    5728.
#> 6 Tahoua    2487.
#> 7 Tillabéri 2506.
#> 8 Zinder    2926.

# Neyman allocation minimizes variance for fixed sample size
sampling_design() |>
  stratify_by(region, alloc = "neyman", variance = niger_eas_variance) |>
  draw(n = 200) |>
  execute(niger_eas, seed = 42)
#> == tbl_sample ==
#> Weights: 5.57 - 9.29 (mean: 7.68 )
#> 
#> # A tibble: 200 × 11
#>    region ea_id       department strata hh_count pop_estimate .weight .sample_id
#>  * <fct>  <chr>       <fct>      <fct>     <dbl>        <dbl>   <dbl>      <int>
#>  1 Agadez Aga_04_0012 Tchirozér… Urban       431         2586    5.67          1
#>  2 Agadez Aga_03_0010 Bilma      Urban       259         1554    5.67          2
#>  3 Agadez Aga_01_0001 Agadez     Rural        59          413    5.67          3
#>  4 Agadez Aga_02_0012 Arlit      Rural       137          959    5.67          4
#>  5 Agadez Aga_01_0010 Agadez     Urban       192         1344    5.67          5
#>  6 Agadez Aga_03_0009 Bilma      Rural        41          287    5.67          6
#>  7 Agadez Aga_02_0005 Arlit      Urban       138          966    5.67          7
#>  8 Agadez Aga_02_0011 Arlit      Rural        70          350    5.67          8
#>  9 Agadez Aga_01_0007 Agadez     Rural       166         1162    5.67          9
#> 10 Diffa  Dif_06_0004 Mainé-Sor… Rural        67          469    9.29         10
#> # ℹ 190 more rows
#> # ℹ 3 more variables: .stage <int>, .weight_1 <dbl>, .fpc_1 <int>