A synthetic health facility frame inspired by Service Provision Assessment (SPA) and Service Availability and Readiness Assessment (SARA) surveys. Uses real Kenya counties but contains entirely fictional data.

kenya_health

Format

A tibble with approximately 3,000 rows and 9 columns:

facility_id

Character. Unique facility identifier

region

Factor. Former province (8 regions)

county

Factor. County name (47 counties)

urban_rural

Factor. Urban/Rural classification

facility_type

Factor. Type of facility (Referral Hospital, County Hospital, Sub-County Hospital, Health Centre, Dispensary, Clinic, Maternity Home)

ownership

Factor. Ownership type (Public, Private, Faith-based, NGO)

beds

Integer. Number of inpatient beds

staff_count

Integer. Number of health workers

outpatient_visits

Integer. Monthly outpatient visits (measure of size)

Details

This dataset is designed for demonstrating:

  • Health facility surveys

  • Stratification by facility type and region

  • PPS sampling using patient volume

  • Sampling across different ownership types

Facility types follow the Kenyan health system hierarchy from referral hospitals down to dispensaries and clinics.

Note

This is a synthetic dataset. Counties and regions are real but all data values are fictional.

Examples

# Explore the data
head(kenya_health)
#> # A tibble: 6 × 9
#>   facility_id region  county urban_rural facility_type  beds staff_count
#>   <chr>       <fct>   <fct>  <fct>       <fct>         <dbl>       <dbl>
#> 1 KE_01_0001  Central Kiambu Rural       Dispensary        3           8
#> 2 KE_01_0002  Central Kiambu Rural       Dispensary        2           4
#> 3 KE_01_0003  Central Kiambu Rural       Clinic            4           5
#> 4 KE_01_0004  Central Kiambu Rural       Dispensary        2           4
#> 5 KE_01_0005  Central Kiambu Rural       Dispensary        3           5
#> 6 KE_01_0006  Central Kiambu Urban       Clinic            3           5
#> # ℹ 2 more variables: outpatient_visits <dbl>, ownership <fct>
table(kenya_health$facility_type)
#> 
#>   Referral Hospital     County Hospital Sub-County Hospital       Health Centre 
#>                  33                  80                 176                 448 
#>          Dispensary              Clinic      Maternity Home 
#>                1420                 780                 161 

# Stratified sample by facility type with proportional allocation
sampling_design() |>
  stratify_by(facility_type, alloc = "proportional") |>
  draw(n = 300) |>
  execute(kenya_health, seed = 42)
#> == tbl_sample ==
#> Weights: 10 - 11 (mean: 10.33 )
#> 
#> # A tibble: 300 × 14
#>    facility_type     facility_id region     county urban_rural  beds staff_count
#>  * <fct>             <chr>       <fct>      <fct>  <fct>       <dbl>       <dbl>
#>  1 Referral Hospital KE_02_0031  Central    Kirin… Rural         155          94
#>  2 Referral Hospital KE_30_0041  Rift Vall… Keric… Rural         379          63
#>  3 Referral Hospital KE_17_0066  Eastern    Thara… Rural         201         128
#>  4 County Hospital   KE_08_0016  Coast      Momba… Rural          73          44
#>  5 County Hospital   KE_21_0002  North Eas… Wajir  Urban          58          59
#>  6 County Hospital   KE_19_0025  North Eas… Garis… Rural         117          48
#>  7 County Hospital   KE_12_0059  Eastern    Embu   Rural          58          33
#>  8 County Hospital   KE_35_0042  Rift Vall… Uasin… Rural          37          43
#>  9 County Hospital   KE_17_0012  Eastern    Thara… Rural          47          44
#> 10 County Hospital   KE_09_0033  Coast      Taita… Urban          33          40
#> # ℹ 290 more rows
#> # ℹ 7 more variables: outpatient_visits <dbl>, ownership <fct>, .weight <dbl>,
#> #   .sample_id <int>, .stage <int>, .weight_1 <dbl>, .fpc_1 <int>

# PPS sample using outpatient visits as measure of size
sampling_design() |>
  draw(n = 100, method = "pps_brewer", mos = outpatient_visits) |>
  execute(kenya_health, seed = 42)
#> == tbl_sample ==
#> Weights: 1 - 200.76 (mean: 29.65 )
#> 
#> # A tibble: 100 × 15
#>    facility_id region      county    urban_rural facility_type  beds staff_count
#>  * <chr>       <fct>       <fct>     <fct>       <fct>         <dbl>       <dbl>
#>  1 KE_02_0031  Central     Kirinyaga Rural       Referral Hos…   155          94
#>  2 KE_36_0047  Western     Bungoma   Rural       Referral Hos…   116          99
#>  3 KE_37_0027  Western     Busia     Rural       Referral Hos…   102         111
#>  4 KE_14_0049  Eastern     Machakos  Rural       Health Centre    13          12
#>  5 KE_32_0010  Rift Valley Nandi     Rural       Sub-County H…    38          23
#>  6 KE_23_0059  Nyanza      Kisii     Rural       Referral Hos…   254         258
#>  7 KE_18_0273  Nairobi     Nairobi   Urban       County Hospi…    97          55
#>  8 KE_28_0042  Rift Valley Baringo   Rural       Referral Hos…   324         113
#>  9 KE_05_0008  Central     Nyeri     Rural       Clinic            6           7
#> 10 KE_24_0041  Nyanza      Kisumu    Rural       Referral Hos…   240         101
#> # ℹ 90 more rows
#> # ℹ 8 more variables: outpatient_visits <dbl>, ownership <fct>, .weight <dbl>,
#> #   .sample_id <int>, .stage <int>, .weight_1 <dbl>, .fpc_1 <int>,
#> #   .certainty_1 <lgl>