Load the required packages
library(tidyverse)
library(sf)
if (!require(rhdx))
remotes::install_gitlab("dickoa/rhdx")
library(rhdx)
rhdx:::rhdx_cache$mkdir()
if (!require(rgeoboundaries))
remotes::install_gitlab("dickoa/rgeoboundaries")
library(rgeoboundaries)
library(janitor)
library(tmap)
Using the rhdx
package we can pull the dataset and access the file (resource), the latest round of the assessment baseline is usually the first HDX resource on IOM baseline dataset
set_rhdx_config()
mli_idps <- pull_dataset("mali-baseline-assessment-data-iom-dtm") %>%
get_resource(1) %>%
read_resource() %>%
clean_names()
## Reading sheet: Mali_Baseline_R62
glimpse(mli_idps)
## Rows: 49
## Columns: 25
## $ snapshot_date <dbl> 43889, 43889, 43889, 43889, 43889, 4388…
## $ admin_0 <chr> "Mali", "Mali", "Mali", "Mali", "Mali",…
## $ admin_0_pcode <chr> "MLI", "MLI", "MLI", "MLI", "MLI", "MLI…
## $ admin_1 <chr> "Kayes", "Kayes", "Kayes", "Kayes", "Ka…
## $ admin_1_pcode <chr> "MLI01", "MLI01", "MLI01", "MLI01", "ML…
## $ admin_2 <chr> "Kayes", "Bafoulabé", "Diema", "Kita", …
## $ admin_2_pcode <chr> "MLI001001", "MLI001002", "MLI001003", …
## $ admin_3 <chr> "Kayes Commune", "Oualia Commune", "Tro…
## $ admin_3_pcode <chr> "MLI00100112", "MLI00100211", "MLI00100…
## $ total_no_of_id_ps_hh <dbl> 8, 4, 20, 337, 2, 10, 17, 108, 298, 31,…
## $ total_no_of_id_ps_ind <dbl> 45, 21, 159, 1326, 12, 61, 89, 536, 140…
## $ main_displacement_start_date <dbl> 40969, 40969, 40969, 40969, 40969, 4096…
## $ total_no_of_returnees_hh <dbl> 0, 0, 0, 37, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ total_no_of_returnees_ind <dbl> 0, 0, 0, 219, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ total_no_migrant_households <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ total_no_migrant_individuals <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ country_of_origin_of_idp <chr> "Mali", "Mali", "Mali", "Mali", "Mali",…
## $ admin_1_area_of_origin_of_idp <chr> "KaYes", "KaYes", "KaYes", "KaYes", "Ka…
## $ confidentiality <chr> "No", "No", "No", "No", "No", "No", "No…
## $ type_of_displacement <chr> "Conflict", "Conflict", "Conflict", "Co…
## $ conflict <chr> "Yes", "Yes", "Yes", "Yes", "Yes", "Yes…
## $ insecurity <chr> "Yes", "Yes", "Yes", "Yes", "Yes", "Yes…
## $ natural_disaster <chr> "No", "No", "No", "No", "No", "No", "No…
## $ political_reasons <chr> "No", "No", "No", "No", "No", "No", "No…
## $ eco_nomic_reasons <chr> "No", "No", "No", "No", "No", "No", "No…
mli_idps_tot_adm1 <- mli_idps %>%
group_by(admin_1) %>%
summarise(n_idps = sum(total_no_of_id_ps_ind, na.rm = TRUE)) %>%
ungroup()
mli_idps_tot_adm1 %>%
ggplot(aes(reorder(admin_1, n_idps), n_idps)) +
geom_col() +
labs(x = "", y = "") +
coord_flip()
mli_adm1 <- gb_adm1("mali")
mli_adm1 %>%
tm_shape() +
tm_borders()
mli_idps_tot_adm1 <- left_join(mli_idps_tot_adm1,
mli_adm1,
by = c("admin_1" = "shapeName")) %>%
st_as_sf(sf_column_name = "geometry")
mli_idps_tot_adm1 %>%
tm_shape() +
tm_polygons(col = "n_idps")